Selasa, 26 April 2011

Biotecnologi



Bioteknologi adalah cabang ilmu yang mempelajari pemanfaatan makhluk hidup (bakteri, fungi, virus, dan lain-lain) maupun produk dari makhluk hidup (enzim, alkohol) dalam proses produksi untuk menghasilkan barang dan jasa.[1] Dewasa ini, perkembangan bioteknologi tidak hanya didasari pada biologi semata, tetapi juga pada ilmu-ilmu terapan dan murni lain, seperti biokimia, komputer, biologi molekular, mikrobiologi, genetika, kimia, matematika, dan lain sebagainya.[1] Dengan kata lain, bioteknologi adalah ilmu terapan yang menggabungkan berbagai cabang ilmu dalam proses produksi barang dan jasa.

Bioteknologi secara sederhana sudah dikenal oleh manusia sejak ribuan tahun yang lalu. Sebagai contoh, di bidang teknologi pangan adalah pembuatan bir, roti, maupun keju yang sudah dikenal sejak abad ke-19, pemuliaan tanaman untuk menghasilkan varietas-varietas baru di bidang pertanian, serta pemuliaan dan reproduksi hewan.[2] Di bidang medis, penerapan bioteknologi di masa lalu dibuktikan antara lain dengan penemuan vaksin, antibiotik, dan insulin walaupun masih dalam jumlah yang terbatas akibat proses fermentasi yang tidak sempurna. Perubahan signifikan terjadi setelah penemuan bioreaktor oleh Louis Pasteur.[1] Dengan alat ini, produksi antibiotik maupun vaksin dapat dilakukan secara massal.

Pada masa ini, bioteknologi berkembang sangat pesat, terutama di negara negara maju. Kemajuan ini ditandai dengan ditemukannya berbagai macam teknologi semisal rekayasa genetika, kultur jaringan, DNA rekombinan, pengembangbiakan sel induk, kloning, dan lain-lain.[3] Teknologi ini memungkinkan kita untuk memperoleh penyembuhan penyakit-penyakit genetik maupun kronis yang belum dapat disembuhkan, seperti kanker ataupun AIDS.[4] Penelitian di bidang pengembangan sel induk juga memungkinkan para penderita stroke ataupun penyakit lain yang mengakibatkan kehilangan atau kerusakan pada jaringan tubuh dapat sembuh seperti sediakala.[4] Di bidang pangan, dengan menggunakan teknologi rekayasa genetika, kultur jaringan dan DNA rekombinan, dapat dihasilkan tanaman dengan sifat dan produk unggul karena mengandung zat gizi yang lebih jika dibandingkan tanaman biasa, serta juga lebih tahan terhadap hama maupun tekanan lingkungan.[5] Penerapan bioteknologi di masa ini juga dapat dijumpai pada pelestarian lingkungan hidup dari polusi. Sebagai contoh, pada penguraian minyak bumi yang tertumpah ke laut oleh bakteri, dan penguraian zat-zat yang bersifat toksik (racun) di sungai atau laut dengan menggunakan bakteri jenis baru.[2]

Kemajuan di bidang bioteknologi tak lepas dari berbagai kontroversi yang melingkupi perkembangan teknologinya. Sebagai contoh, teknologi kloning dan rekayasa genetika terhadap tanaman pangan mendapat kecaman dari bermacam-macam golongan.

Bioteknologi secara umum berarti meningkatkan kualitas suatu organisme melalui aplikasi teknologi. Aplikasi teknologi tersebut dapat memodifikasi fungsi biologis suatu organisme dengan menambahkan gen dari organisme lain atau merekayasa gen pada organisme tersebut.[2]

Perubahan sifat Biologis melalui rekayasa genetika tersebut menyebabkan "lahirnya organisme baru" produk bioteknologi dengan sifat - sifat yang menguntungkan bagi manusia. Produk bioteknologi, antara lain[2]:

Jagung resisten hama serangga
Kapas resisten hama serangga
Pepaya resisten virus
Enzim pemacu produksi susu pada sapi
Padi mengandung vitamin A
Pisang mengandung vaksin hepatitis

Garis waktu bioteknologi

8000 SM Pengumpulan benih untuk ditanam kembali. Bukti bahwa bangsa Babilonia, Mesir, dan Romawi melakukan praktik pengembangbiakan selektif (seleksi artifisal) untuk meningkatkan kualitas ternak.
6000 SM Pembuatan bir, fermentasi anggur, membuat roti, membuat tempe dengan bantuan ragi.
4000 SM Bangsa Tionghoa membuat yogurt dan keju dengan bakteri asam laktat.
1500 Pengumpulan tumbuhan di seluruh dunia.
1665 Penemuan sel oleh Robert Hooke(Inggris) melalui mikroskop.[6]
1800 Nikolai I. Vavilov menciptakan penelitian komprehensif tentang pengembangbiakan hewan.
1880 Mikroorganisme ditemukan.
1856 Gregor Mendel mengawali genetika tumbuhan rekombinan.[7]
1865 Gregor Mendel menemukan hukum hukum dalam penyampaian sifat induk ke turunannya.[8]
1919 Karl Ereky, insinyur Hongaria, pertama menggunakan kata bioteknologi.
1970 Peneliti di AS berhasil menemukan enzim pembatas yang digunakan untuk memotong gen gen.
1975 Metode produksi antibodi monoklonal dikembangkan oleh Kohler dan Milstein.
1978 Para peneliti di AS berhasil membuat insulin dengan menggunakan bakteri yang terdapat pada usus besar.[9]
1980 Bioteknologi modern dicirikan oleh teknologi DNA rekombinan. Model prokariot-nya, E. coli, digunakan untuk memproduksi insulin dan obat lain, dalam bentuk manusia. Sekitar 5% pengidap diabetes alergi terhadap insulin hewan yang sebelumnya tersedia).
1992 FDA menyetujui makanan GM pertama dari Calgene: tomat "flavor saver".
2000 Perampungan Human Genome Project

[sunting] Jenis

Bioteknologi memiliki beberapa jenis atau cabang ilmu yang beberapa diantaranya diasosikan dengan warna, yaitu:[10]
Bir, salah satu produk bioteknologi putih konvensional.

Bioteknologi merah (red biotechnology) adalah cabang ilmu bioteknologi yang mempelajari aplikasi bioeknologi di bidang medis.[10] Cakupannya meliputi seluruh spektrum pengobatan manusia, mulai dari tahap preventif, diagnosis, dan pengobatan. Contoh penerapannya adalah pemanfaatan organisme untuk menghasilkan obat dan vaksin, penggunaan sel induk untuk pengobatan regeneratif, serta terapi gen untuk mengobati penyakit genetik dengan cara menyisipkan atau menggantikan gen abnomal dengan gen yang normal.[10]
Bioteknologi putih/abu-abu (white/gray biotechnology) adalah bioteknologi yang diaplikasikan dalam industri seperti pengembangan dan produksi senyawa baru serta pembuatan sumber energi terbarukan.[10] Dengan memanipulasi mikroorganisme seperti bakteri dan khamir/ragi, enzim-enzim juga organisme-organisme yang lebih baik telah tercipta untuk memudahkan proses produksi dan pengolahan limbah industri. Pelindian (bleaching) minyak dan mineral dari tanah untuk meningkakan efisiensi pertambangan, dan pembuatan bir dengan khamir.[10]
Bioteknologi hijau (green biotechnology) mempelajari aplikasi bioteknologi di bidang pertanian dan peternakan.[10] Di bidang pertanian, bioteknoogi telah berperan dalam menghasilkan tanaman tahan hama, bahan pangan dengan kandungan gizi lebih tinggi dan tanaman yang menghasilkan obat atau senyawa yang bermanfaat. Sementara itu, di bidang peternakan, binatang-binatang telah digunakan sebagai "bioreaktor" untuk menghasilkan produk penting contohnya kambing, sapi, domba, dan ayam telah digunakan sebagai penghasil antibodi-protein protektif yang membantu sel tubuh mengenali dan melawan senyawa asing (antigen).[10]
Bioteknologi biru (blue biotechnology) disebut juga bioteknologi akuatik/perairan yang mengendalikan proses-proses yang terjadi di lingkungan akuatik.[10] Salah satu contoh yang paling tua adalah akuakultura, menumbuhkan ikan bersirip atau kerang-kerangan dalam kondisi terkontrol sebagai sumber makanan, (diperkirakan 30% ikan yang dikonsumsi di seluruh dunia dihasilkan oleh akuakultura). Perkembangan bioteknologi akuatik termasuk rekayasa genetika untuk menghasilkan tiram tahan penyakit dan vaksin untuk melawan virus yang menyerang salmon dan ikan yang lain. Contoh lainnya adalah salmon transgenik yang memiliki hormon pertumbuhan secara berlebihan sehingga menghasilkan tingkat pertumbuhan sangat tinggi dalam waktu singkat.[11][12]

[sunting] Rekayasa genetika

Rekayasa genetika adalah prosedur dasar dalam menghasilkan suatu produk bioteknologi. Secara umum, rekayasa genetika melakukan modifikasi pada mahluk hidup melalui transfer gen dari suatu organisme ke organisme lain. Prosedur rekayasa genetika secara umum meliputi[2]:

Isolasi gen.
Memodifikasi gen sehingga fungsi biologisnya lebih baik.
Mentrasfer gen tersebut ke organisme baru.
Membentuk produk organisme transgenik.

Prosedur pembentukan organisme transgenic ada dua, yaitu:

Melalui proses introduksi gen
Melalui proses mutagenesis

[sunting] Proses introduksi gen

Beberapa langkah dasar proses introduksi gen adalah[2]:

Membentuk sekuen gen yang diinginkan yang ditandai dengan penanda yang spesifik
Mentransformasi sekuen gen yang sudah ditandai ke jaringan
Mengkultur jaringan yang sudah mengandung gen yang ditransformasikan
Uji coba kultur tersebut di lapangan

[sunting] Mutagenesis

Memodifikasi gen pada organisme tersebut dengan mengganti sekuen basa nitrogen pada DNA yang ada untuk diganti dengan basa nitrogen lain sehingga terjadi perubahan sifat pada organisme tersebut, contoh: semula sifatnya tidak tahan hama menjadi tahan hama. Agen mutagenesis ini biasanya dikenal dengan istilah mutagen. Beberapa contoh mutagen yang umum dipakai adalah sinar gamma (mutagen fisika) dan etil metana sulfonat (mutagen kimia).[5]
[sunting] Human Genome Project

Human Genome Project adalah usaha international yang dimulai pada tahun 1990 untuk mengidentifikasi semua gen (genom) yang terdapat pada DNA dalam sel manusia dan memetakan lokasinya pada tiap kromosom manusia yang berjumlah 24.[12] Proyek ini memiliki potensi tak terbatas untuk perkembangan di bidang pendekatan diagnostik untuk mendeteksi penyakit dan pendekatan molekuler untuk menyembuhkan penyakit genetik manusia [12]
[sunting] Aplikasi di Bidang Medis

Aplikasi dari bioteknologi medis sudah berlangsung lama, sebagai contoh 100 tahun lalu lintah umum digunakan untuk merawat penyakit dengan cara membiarkan lintah menyedot darah pasien bloodletting| bloodletting. Hal ini dipercaya dapat menghilangkan darah yang sudah terjangkit penyakit. Pada zaman sekarang, lintah ditemukan memiliki enzim pada kelenjar salivanya yang dapat menghancurkan gumpalan darah yang bila tidak dihancurkan dapat menyebabkan strok dan serangan jantung. Selain contoh tersebut, terdapat banyak aplikasi bioteknologi di bidang medis sebagai berikut.
[sunting] Sel Punca

Sel punca adalah jenis sel khusus dengan kemampuan membentuk ulang dirinya dan dalam saat yang bersamaan membentuk sel yang terspesialisasi. Aplikasi Terapeutik Sel Stem Embrionik pada Berbagai Penyakit Degeneratif. Dalam Cermin Dunia Kedokteran, meskipun kebanyakan sel dalam tubuh seperti jantung maupun hati telah terbentuk khusus untuk memenuhi fungsi tertentu, stem cell selalu berada dalam keadaan tidak terdiferensiasi sampai ada sinyal tertentu yang mengarahkannya berdiferensiasi menjadi sel jenis tertentu. Kemampuannya untuk berproliferasi bersamaan dengan kemampuannya berdiferensiasi menjadi jenis sel tertentu inilah yang membuatnya unik . Karakteristik biologis dan diferensiasi stem cell fokus pada mesenchymal stem cell. Cermin Dunia Kedokteran

Aplikasi dari sel punca diantaranya adalah pengobatan infark jantung yaitu menggunakan sel punca yang berasal dari sumsum tulang untuk mengganti sel-sel pembuluh yang rusak (neovaskularisasi). Aplikasi terapeutik sel stem embrionik pada berbagai penyakit degeneratif. Cermin Dunia Kedokteran . Selain itu, sel punca diduga dapat digunakan untuk pengobatan diabetes tipe I dengan cara mengganti sel pankreas yang sudah rusak dengan sel pankreas hasil diferensiasi sel punca. Hal ini dilakukan untuk menghindari reaksi penolakan yang dapat terjadi seperti pada transplantasi pankreas dari binatang. Sejauh ini percobaan telah berhasil dilakukan pada mencit
[sunting]
Read More … Biotecnologi

Memperoleh Rizki Yang Halal Dari Allah

Dakwah Jum’at Al Akbar, Edisi 160 | 26 Rajab 1430 H/ 05 Juni 20...


Allah menciptakan manusia dari bumi,dan Allah juga menyuruh manusia untuk memakmurkannya. Sebagai khslifsh di muks bumi ini, manusia dituntut untuk melestarikan alam semesta ini demi kelangsungan kehidupan manusia. Semua fasilitas yang sudah tersedia di dunia secara gratis seperti tumbuhan, binatang, angin, udara, air dan apapun adalah untuk manusia.

Tentunya hal tersebut dimaksudkan untuk membantu kekahalifahan manusia di bumi. Allah berkali-kali mengatakan bahwa dalam melakukan sesuatu hal, janganlah pernah melampui batas. Artinya manusia harus bisa berlaku normal sebagaimana adanya. Allah mengatakan bahwasannya potensi-potensi alam itu tidak akan pernah habis, tetapi hal tersebut berlaku apabila manusia memanfaatkan dengan sewajarnya. Dia menciptakan manusia, mengajarnya pandai berbicara, matahari dan bulan (beredar) menurut perhitungan. Dan tumbuh-tumbuhan dan pohon-pohonan kedua-duanya tunduk kepada-Nya. Dan Allah telah meninggikan langit dan Dia meletakkan neraca (keadilan), supaya kamu jangan melampui batas tentang neraca itu. Dan tegakkanlah timbangan itu dengan adil dan janganlah kamu mengurangi neraca itu. Dan Allah telah meratakan bumi untuk makhluk-Nya. Di bumi itu ada buah-buahan dan pohn kurma yang mempunyai kelopak mayang dan biji-bijian yang berkulit dan bunga-bunga yang harum baunya. Maka nikmat Tuhan kamu yang manakah yang kamu dustakan? (Arrahmaan 3-12). Kita sebagai bangsa Indonesia telah dimanjakan oleh Allah dengan kenikmatan-kenikmatan dan kemudahan-kemudahan yang tidak diberikan oleh negara lain. Sehingga kadang kita bermalas-malasan dengan kemudahan itu. Ubi dipotong pohonnya lalu ditanam pasti tumbuh, jagung disebar juga tumbuh. Sementara orang di luar sana kalau ingin makan harus kerja keras, baju harus berlapis-lapis. Sementara musim kita hanya dua, kalau diluar sana ada empat musim. Tetapi kita yang telah diberi kemudahan hidup terkadang kurang bersyukur. Syukurnya mayoritas bangsa ini hanya kalau kita dapat rizki besar, dapat kenaikan pangkat dan sebagai, padahal bukan itu saja. Kalau kita bisa menempatkan sikap qonaah (menerima pembagian Allah) dan selalu bersyukur atas karunia Allah, maka insya Allah kita akan ditambah nikmatnya. Jadi kata kuncinya adalah syukur. (An Naml : 40)

Nikmat Allah sangatlah luas dan jika menghitung nikmat itu tidak akan bisa menghitungnya, walaupun dengan kecanggihan yang dibuat manusia. Bahkan kalau sekiranya lautan dijadikan tinta untuk menulis kebesaran dan nikmat Allah, akan habislah tinta itu dan rahmat Allah belum tertulis semua nikmat Allah tersebut. Jikalau sekiranya penduduk negeri-negeri beriman dan bertaqwa, pastilah kami akan melimpahkan kepada mereka berkah dari langit dan bumi, tetapi mereka mendustakan (ayat-ayat Kami) itu, Maka Kami siksa mereka disebabkan perbuatannya. Al-A’raf : 96.

Barakah adalah pertumbuhan dan pertambahan yang berarti banyak kebaikan, banyak pahala dan keluasan rizki, banyak memberikan manfaat. Keberkahan langit adalah pengabulan do’a, sedangkan keberkahan bumi adalah terpenuhinya kebutuhan hidup sehari-hari. Rasulullah SAW senantiasa mendoakan umatnya yakni : Allahumma baarikna liummatii fi bukhuurihim (Ya Allah berkahilah umatku itu setiap pagi). Barakah merupakan kunci keberhasilan dalam berdoa. Keberkahan langit dan bumi. Barakah adalah simbol kebahagiaan dunia dan akhirat. Rizki yang barakah adalah rizki yang kalau dimakan tanpa ada beban moral. Mengalirkan darah secara lancar, menumbuhkan daging segar dan halal. Banyak kehidupan sekarang ini yang dipengaruhi oleh gemerlapnya dunia. Seakan-akan tidak ada akhirnya. Hidup selamanya. Mereka tidak memikirkan bahwa Nabi dan Rasul saja meninggal dunia. Mereka sudah tidak lagi melihat rambu-rambu syariat. Mereka tinggalkan ayat-ayat Allah. Inilah yang nantinya akan menjadikan kita akan diberi musibah atau tambahan nikmat, kalau diantara kita sudah tidak lagi mempedulikan dan tidak lagi menegakkan agama Allah, kemungkinan musibah akan ditimpahkan kepada kita, namun kalau masing-masing dari kita tetap tegakkan amar makruf nahi mungkar, Insya Allah negeri kita akan dinaungi dengan barakah.



Read More … Memperoleh Rizki Yang Halal Dari Allah

Sabtu, 23 April 2011

Zat Adiktif

Pengertian Zat Adiktiv

Zat adiktif adalah obat serta bahan-bahan aktif yang apabila dikonsumsi oleh organisme hidup
dapat menyebabkan kerja biologi serta menimbulkan ketergantungan atau adiksi yang sulit
dihentikan dan berefek ingin menggunakannya secara terus-menerus yang jika dihentikan dapat
memberi efek lelah luar biasa atau rasa sakit luar biasa.
B. Jenis Obat Yang Berzat Adiktif
Sesuai dengan Undang-Undang No.5 Tahun 1997 tentang Psikotropika menyebutkan beberapa
obat yang mengandung zat adiktif di antaranya adalah :
1. Amfetamin
2. Amobarbital, Flunitrazepam

3. Diahepam, Bromazepam, Fenobarbital
4. Minuman Beralkohol / Minuman Keras / Miras
5. Tembakau / Rokok / Lisong
6. Halusinogen
7. Bahan Pelarut seperti bensin, tiner, lem, cat, solvent, dll
C. Dampak / Efek yang Dapat Ditimbulkan Zat Adiktif

1. Efek/Dampak Penyalahgunaan Minuman Alkohol
Alkohol dalam minuman keras dapat menyebabkan gangguan jantung dan otot syaraf,
mengganggu metabolisme tubuh, membuat janis menjadi cacat, impoten serta gangguan seks
lainnya.

2. Efek/Dampak Penyalahgunaan Ganja
Zat kandungan dalam ganja yang berbahaya dapat menyebabkan daya tahan tubuh berkurang dan
melemah sehingga mudah terserang penyakit dan infeksi serta memperburuk aliran darah
koroner.
3. Efek/Dampak Penyalahgunaan Halusinogen
Halusinogen dalam tubuh manusia dapat mengakibatkan pendarahan otak.

4. Efek/Dampak Penyalahgunaan Kokain
Zat adiktif kokain jika dikonsumsi dalam jangka panjang dapat menyebabkan kekurangan sel
darah putih atau anemia sehingga dapat membuat badan kurus kering. Selain itu kokain
menimbulkan perforesi sekat hidung (ulkus) dan aritma pada jantung.

5. Efek/Dampak Penyalahgunaan Opiat / Opioda
Zat opioda atau opiat yang masuk ke dalam badan manusia dapat mengganggu menstruasi pada
perempuan / wanita serta impotensi dan konstipasi khronuk pada pria / laki-laki.

6. Efek/Dampak Penyalahgunaan Inhalasia
Inhalasia memiliki dampak buruk bagi kesehatan kita seperti gangguan pada fungsi jantung,
otak, dan lever.

7. Efek/Dampak Penyalahgunaan Non Obat
Dalam kehidupan sehari-hari sering kita temui benda-benda yang disalahgunakan oleh banyak
orang untuk mendapatkan efek tertentu yang dapat mengakibatkan gangguan kesehatan. Contoh
barang yang dijadikan candu antara lain seperti bensin, thiner, racun serangga, lem uhu, lem aica
aibon. Efek dari penggunaan yang salah pada tubuh manusia adalah dapat menimbulkan infeksi
emboli.
----

Keterangan :
Untuk mengetahui narkoba lebih lanjut anda dapat mencari melalui fitur search pada kolom
sebelah kiri situs organisasi.org ini.

ke
Narkotika
Oleh:AsianBra in.co m Content Team

"Narkotika adalah zat atau obat yang berasal dari tanaman atau bukan tanaman, baik sintetis
maupun semi sintetis. Zat tersebut menyebabkan penurunan atau perubahan kesadaran,
menghilangkan rasa, mengurangi hingga menghilangkan rasa nyeri, dan dapat menimbulkan
ketergantungan (adiktif)."
--UU No. 22 Tahun 1997--

WHO sendiri memberikan definisi tentang narkotika sebagai berikut: "Narkotika merupakan suatu zat yang apabila dimasukkan ke dalam tubuh akan memengaruhi fungsi fisik dan/atau psikologi (kecuali makanan, air, atau oksigen)."
Macam-macam narkotika
Narkotika banyak sekali macamnya, ada yang berbentuk cair, padat, serbuk, daun-daun, dan lain
sebagainya. Di bawah ini diuraikan sedikit mengenai macam-macam narkotika, yaitu:
1.Opioid
Bahan opioid adalah saripati bunga opium. Zat yang termasuk kelompok opioid antara
lain:

Heroin, disebut jugadiamorf in (INN) bisa ditemukan dalam bentuk pil, serbuk,
dan cairan.

Codein, biasanya dijual dalam bentuk pil atau cairan bening

Comerol, sama dengancodein biasanya dijual dalam bentuk pil atau cairan
bening
○Putaw
2.Kokain
Kokain merupakanalkalo id yang berasal dari tanaman Erythroxylon coca. Jenis
tanamannya berbentuk belukar. Zat ini berasal dari Peru dan Bolivia.
3.Ganja (Cannabis /Cimeng)

Ganja merupakan tumbuhan penghasil serat. Akan tetapi, tumbuhan ini lebih dikenal
karena kandungan narkotikanya, yaitutetrahidrokanabinol (THC). Semua bagian
tanaman ganja mengandung kanaboid psikoaktif.
Cara menggunakan ganja biasanya dipotong, dikeringkan, dipotong kecil-kecil, lalu
digulung menjadi rokok. Asap ganja mengandung tiga kali lebih banyak
karbonmonoksida daripada rokok biasa.
Adapun zat lain yang memiliki dampak yang sama bahayanya dengannarkotika jika
disalahgunakan, yaitu psikotropika. Jenis-jenis yang termasuk zat ini antara lain:

Ectasy(ineks),

Shabu-shabu (methamphetamine), dan

Benzodiazepin(Pil Nipam, BK, dan Magadon).
Dampak negatif penyalahgunaan narkotika

Menurut definisi di atas, jelaslah bahwa narkotika, jika disalahgunakan, sangat membahayakan bagi kesehatan fisik dan mental manusia. Bahkan, pada pemakaian dengan dosis berlebih atau yang dikenal dengan istilah over dosis (OD) bisa mengakibatkan kematian. Namun sayang sekali, walaupun sudah tahu zat tersebut sangat berbahaya, masih saja ada orang-orang yang menyalahgunakannya.
Dampak positif narkotika bagi kehidupan manusia
Walaupun begitu, setiap kehidupan memiliki dua sisi mata uang. Di balik dampak negatif,
narkotika juga memberikan dampak yang positif. Jika digunakan sebagaimana mestinya,
terutama untuk menyelamatkan jiwa manusia dan membantu dalam pengobatan, narkotika
memberikan manfaat bagi kehidupan manusia. Berikut dampak positif narkotika:
1.Opioid
Opioid atau opium digunakan selama berabad-abad sebagai penghilang rasa sakit dan
untuk mencegah batuk dan diare.
2.Kokain

Daun tanamanErythroxylon coca biasanya dikunyah-kunyah untuk mendapatkan efek
stimulan, seperti untuk meningkatkan daya tahan dan stamina serta mengurangi rasa
lelah.
3.Ganja (ganja/cimeng)

Orang-orang terdahulu menggunakan tanaman ganja untuk bahan pembuat kantung
karena serat yang dihasilkannya sangat kuat. Biji ganja juga digunakan sebagai bahan
pembuat minyak.
Bahaya Narkoba
Oleh:AsianBra in.co m Content Team
Bahaya narkoba sudah menjadi momok yang menakutkan bagi masyarakat. Berbagai kampanye
anti narkoba dan penanggulangan terhadap orang-orang yang ingin sembuh dari ketergantungan
narkoba semakin banyak didengung-dengungkan.
Sebab, penyalahgunaan narkoba bisa membahayakan bagi keluarga, masyarakat, dan masa depan
bangsa.
Bahaya penyalahgunaan narkoba bagi tubuh manusia
Secara umum semua jenis narkoba jika disalahgunakan akan memberikan empat dampak sebagai
berikut:
1.Depresan
Pemakai akan tertidur atau tidak sadarkan diri.
Read More … Zat Adiktif

Kamis, 21 April 2011

Fotosintesis

Fotosintesis adalah suatu proses biokimia pembentukan zat makanan atau energi yaitu glukosa yang dilakukan tumbuhan, alga, dan beberapa jenis bakteri dengan menggunakan zat hara, karbondioksida, dan air serta dibutuhkan bantuan energi cahaya matahari.[1] Hampir semua makhluk hidup bergantung dari energi yang dihasilkan dalam fotosintesis. Akibatnya fotosintesis menjadi sangat penting bagi kehidupan di bumi.[1] Fotosintesis juga berjasa menghasilkan sebagian besar oksigen yang terdapat di atmosfer bumi.[1] Organisme yang menghasilkan energi melalui fotosintesis (photos berarti cahaya) disebut sebagai fototrof.[1] Fotosintesis merupakan salah satu cara asimilasi karbon karena dalam fotosintesis karbon bebas dari CO2 diikat (difiksasi) menjadi gula sebagai molekul penyimpan energi.[1] Cara lain yang ditempuh organisme untuk mengasimilasi karbon adalah melalui kemosintesis, yang dilakukan oleh sejumlah bakteri belerang.[sunting][1]

Sejarah

Meskipun masih ada langkah-langkah dalam fotosintesis yang belum dipahami, persamaan umum fotosintesis telah diketahui sejak tahun 1800-an.[2] Pada awal tahun 1600-an, seorang dokter dan ahli kimia, Jan van Helmont, seorang Flandria (sekarang bagian dari Belgia), melakukan percobaan untuk mengetahui faktor apa yang menyebabkan massa tumbuhan bertambah dari waktu ke waktu.[2] Dari penelitiannya, Helmont menyimpulkan bahwa massa tumbuhan bertambah hanya karena pemberian air.[2] Namun, pada tahun 1727, ahli botani Inggris, Stephen Hales berhipotesis bahwa pasti ada faktor lain selain air yang berperan. Ia mengemukakan bahwa sebagian makanan tumbuhan berasal dari atmosfer dan cahaya yang terlibat dalam proses tertentu.[2] Pada saat itu belum diketahui bahwa udara mengandung unsur gas yang berlainan.[1]

Pada tahun 1771, Joseph Priestley, seorang ahli kimia dan pendeta berkebangsaan Inggris, menemukan bahwa ketika ia menutup sebuah lilin menyala dengan sebuah toples terbalik, nyalanya akan mati sebelum lilinnya habis terbakar.[3] Ia kemudian menemukan bila ia meletakkan tikus dalam toples terbalik bersama lilin, tikus itu akan mati lemas. Dari kedua percobaan itu, Priestley menyimpulkan bahwa nyala lilin telah "merusak" udara dalam toples itu dan menyebabkan matinya tikus.[3] Ia kemudian menunjukkan bahwa udara yang telah “dirusak” oleh lilin tersebut dapat “dipulihkan” oleh tumbuhan.[3] Ia juga menunjukkan bahwa tikus dapat tetap hidup dalam toples tertutup asalkan di dalamnya juga terdapat tumbuhan.[3]

Pada tahun 1778, Jan Ingenhousz, dokter kerajaan Austria, mengulangi eksperimen Priestley.[4] Ia memperlihatkan bahwa cahaya matahari berpengaruh pada tumbuhan sehingga dapat "memulihkan" udara yang "rusak".[5] Ia juga menemukan bahwa tumbuhan juga 'mengotori udara' pada keadaan gelap sehingga ia lalu menyarankan agar tumbuhan dikeluarkan dari rumah pada malam hari untuk mencegah kemungkinan meracuni penghuninya.[5]

Akhirnya di tahun 1782, Jean Senebier, seorang pastor Perancis, menunjukkan bahwa udara yang “dipulihkan” dan “merusak” itu adalah karbon dioksida yang diserap oleh tumbuhan dalam fotosintesis.[1] Tidak lama kemudian, Theodore de Saussure berhasil menunjukkan hubungan antara hipotesis Stephen Hale dengan percobaan-percobaan "pemulihan" udara.[1] Ia menemukan bahwa peningkatan massa tumbuhan bukan hanya karena penyerapan karbon dioksida, tetapi juga oleh pemberian air.[1] Melalui serangkaian eksperimen inilah akhirnya para ahli berhasil menggambarkan persamaan umum dari fotosintesis yang menghasilkan makanan (seperti glukosa). Demikian semoga ada yg mau membantu menambahkannya. Thank's diberitahukan oleh miftahul fauza
[sunting]
Pigmen

Struktur kloroplas:
1. membran luar
2. ruang antar membran
3. membran dalam (1+2+3: bagian amplop)
4. stroma
5. lumen tilakoid (inside of thylakoid)
6. membran tilakoid
7. granum (kumpulan tilakoid)
8. tilakoid (lamella)
9. pati
10. ribosom
11. DNA plastida
12. plastoglobula

Proses fotosintesis tidak dapat berlangsung pada setiap sel, tetapi hanya pada sel yang mengandung pigmen fotosintetik.[6] Sel yang tidak mempunyai pigmen fotosintetik ini tidak mampu melakukan proses fotosintesis.[6] Pada percobaan Jan Ingenhousz, dapat diketahui bahwa intensitas cahaya memengaruhi laju fotosintesis pada tumbuhan.[5] Hal ini dapat terjadi karena perbedaan energi yang dihasilkan oleh setiap spektrum cahaya.[5] Di samping adanya perbedaan energi tersebut, faktor lain yang menjadi pembeda adalah kemampuan daun dalam menyerap berbagai spektrum cahaya yang berbeda tersebut.[5] Perbedaan kemampuan daun dalam menyerap berbagai spektrum cahaya tersebut disebabkan adanya perbedaan jenis pigmen yang terkandung pada jaringan daun.[5]

Di dalam daun terdapat mesofil yang terdiri atas jaringan bunga karang dan jaringan pagar.[7] Pada kedua jaringan ini, terdapat kloroplas yang mengandung pigmen hijau klorofil.[7] Pigmen ini merupakan salah satu dari pigmen fotosintesis yang berperan penting dalam menyerap energi matahari.[7]
[sunting]
Kloroplas
Hasil mikroskop elektron dari kloroplas

Kloroplas terdapat pada semua bagian tumbuhan yang berwarna hijau, termasuk batang dan buah yang belum matang.[8] Di dalam kloroplas terdapat pigmen klorofil yang berperan dalam proses fotosintesis.[9] Kloroplas mempunyai bentuk seperti cakram dengan ruang yang disebut stroma.[8] Stroma ini dibungkus oleh dua lapisan membran.[8] Membran stroma ini disebut tilakoid, yang didalamnya terdapat ruang-ruang antar membran yang disebut lokuli.[8] Di dalam stroma juga terdapat lamela-lamela yang bertumpuk-tumpuk membentuk grana (kumpulan granum).[8] Granum sendiri terdiri atas membran tilakoid yang merupakan tempat terjadinya reaksi terang dan ruang tilakoid yang merupakan ruang di antara membran tilakoid.[8] Bila sebuah granum disayat maka akan dijumpai beberapa komponen seperti protein, klorofil a, klorofil b, karetonoid, dan lipid.[10] Secara keseluruhan, stroma berisi protein, enzim, DNA, RNA, gula fosfat, ribosom, vitamin-vitamin, dan juga ion-ion logam seperti mangan (Mn), besi (Fe), maupun perak (Cu).[7] Pigmen fotosintetik terdapat pada membran tilakoid.[7] Sedangkan, pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid dengan produk akhir berupa glukosa yang dibentuk di dalam stroma.[7] Klorofil sendiri sebenarnya hanya merupakan sebagian dari perangkat dalam fotosintesis yang dikenal sebagai fotosistem.[7]
[sunting]
Fotosistem

Fotosistem adalah suatu unit yang mampu menangkap energi cahaya matahari yang terdiri dari klorofil a, kompleks antena, dan akseptor elektron.[7] Di dalam kloroplas terdapat beberapa macam klorofil dan pigmen lain, seperti klorofil a yang berwarna hijau muda, klorofil b berwarna hijau tua, dan karoten yang berwarna kuning sampai jingga.[7] Pigmen-pigmen tersebut mengelompok dalam membran tilakoid dan membentuk perangkat pigmen yang berperan penting dalam fotosintesis.[11]

Klorofil a berada dalam bagian pusat reaksi.[12] Klorofil ini berperan dalam menyalurkan elektron yang berenergi tinggi ke akseptor utama elektron.[12] Elektron ini selanjutnya masuk ke sistem siklus elektron.[12] Elektron yang dilepaskan klorofil a mempunyai energi tinggi sebab memperoleh energi dari cahaya yang berasal dari molekul perangkat pigmen yang dikenal dengan kompleks antena.[11]

Fotosistem sendiri dapat dibedakan menjadi dua, yaitu fotosistem I dan fotosistem II.[11] Pada fotosistem I ini penyerapan energi cahaya dilakukan oleh klorofil a yang sensitif terhadap cahaya dengan panjang gelombang 700 nm sehingga klorofil a disebut juga P700.[13] Energi yang diperoleh P700 ditransfer dari kompleks antena.[13] Pada fotosistem II penyerapan energi cahaya dilakukan oleh klorofil a yang sensitif terhadap panjang gelombang 680 nm sehingga disebut P680.[14] P680 yang teroksidasi merupakan agen pengoksidasi yang lebih kuat daripada P700.[14] Dengan potensial redoks yang lebih besar, akan cukup elektron negatif untuk memperoleh elektron dari molekul-molekul air.[7]
[sunting] Fotosintesis pada tumbuhan
Fotosintesis pada tumbuhan

Tumbuhan bersifat autotrof.[4] Autotrof artinya dapat mensintesis makanan langsung dari senyawa anorganik.[4] Tumbuhan menggunakan karbon dioksida dan air untuk menghasilkan gula dan oksigen yang diperlukan sebagai makanannya. Energi untuk menjalankan proses ini berasal dari fotosintesis. Perhatikan persamaan reaksi yang menghasilkan glukosa berikut ini:
6H2O + 6CO2 + cahaya → C6H12O6 (glukosa) + 6O2


Glukosa dapat digunakan untuk membentuk senyawa organik lain seperti selulosa dan dapat pula digunakan sebagai bahan bakar.[4] Proses ini berlangsung melalui respirasi seluler yang terjadi baik pada hewan maupun tumbuhan.[4] Secara umum reaksi yang terjadi pada respirasi seluler berkebalikan dengan persamaan di atas.[4] Pada respirasi, gula (glukosa) dan senyawa lain akan bereaksi dengan oksigen untuk menghasilkan karbon dioksida, air, dan energi kimia.[4]

Tumbuhan menangkap cahaya menggunakan pigmen yang disebut klorofil.[4] Pigmen inilah yang memberi warna hijau pada tumbuhan. Klorofil terdapat dalam organel yang disebut kloroplas.[4] klorofil menyerap cahaya yang akan digunakan dalam fotosintesis.[4] Meskipun seluruh bagian tubuh tumbuhan yang berwarna hijau mengandung kloroplas, namun sebagian besar energi dihasilkan di daun.[4] Di dalam daun terdapat lapisan sel yang disebut mesofil yang mengandung setengah juta kloroplas setiap milimeter perseginya.[4] Cahaya akan melewati lapisan epidermis tanpa warna dan yang transparan, menuju mesofil, tempat terjadinya sebagian besar proses fotosintesis.[4] Permukaan daun biasanya dilapisi oleh kutikula dari lilin yang bersifat anti air untuk mencegah terjadinya penyerapan sinar matahari ataupun penguapan air yang berlebihan.[4]
[sunting]
Fotosintesis pada alga dan bakteri

Alga terdiri dari alga multiseluler seperti ganggang hingga alga mikroskopik yang hanya terdiri dari satu sel.[15] Meskipun alga tidak memiliki struktur sekompleks tumbuhan darat, fotosintesis pada keduanya terjadi dengan cara yang sama.[15] Hanya saja karena alga memiliki berbagai jenis pigmen dalam kloroplasnya, maka panjang gelombang cahaya yang diserapnya pun lebih bervariasi.[15] Semua alga menghasilkan oksigen dan kebanyakan bersifat autotrof.[15] Hanya sebagian kecil saja yang bersifat heterotrof yang berarti bergantung pada materi yang dihasilkan oleh organisme lain.[15]
[sunting]
Proses

Hingga sekarang fotosintesis masih terus dipelajari karena masih ada sejumlah tahap yang belum bisa dijelaskan, meskipun sudah sangat banyak yang diketahui tentang proses vital ini.[16] Proses fotosintesis sangat kompleks karena melibatkan semua cabang ilmu pengetahuan alam utama, seperti fisika, kimia, maupun biologi sendiri.[16]

Pada tumbuhan, organ utama tempat berlangsungnya fotosintesis adalah daun.[16] Namun secara umum, semua sel yang memiliki kloroplas berpotensi untuk melangsungkan reaksi ini.[17] Di organel inilah tempat berlangsungnya fotosintesis, tepatnya pada bagian stroma.[16] Hasil fotosintesis (disebut fotosintat) biasanya dikirim ke jaringan-jaringan terdekat terlebih dahulu.[16]

Pada dasarnya, rangkaian reaksi fotosintesis dapat dibagi menjadi dua bagian utama: reaksi terang (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida).[18]

Reaksi terang terjadi pada grana (tunggal: granum), sedangkan reaksi gelap terjadi di dalam stroma.[18] Dalam reaksi terang, terjadi konversi energi cahaya menjadi energi kimia dan menghasilkan oksigen (O2).[18] Sedangkan dalam reaksi gelap terjadi seri reaksi siklik yang membentuk gula dari bahan dasar CO2 dan energi (ATP dan NADPH).[18] Energi yang digunakan dalam reaksi gelap ini diperoleh dari reaksi terang.[18] Pada proses reaksi gelap tidak dibutuhkan cahaya matahari. Reaksi gelap bertujuan untuk mengubah senyawa yang mengandung atom karbon menjadi molekul gula.[18] Dari semua radiasi matahari yang dipancarkan, hanya panjang gelombang tertentu yang dimanfaatkan tumbuhan untuk proses fotosintesis, yaitu panjang gelombang yang berada pada kisaran cahaya tampak (380-700 nm).[18] Cahaya tampak terbagi atas cahaya merah (610 - 700 nm), hijau kuning (510 - 600 nm), biru (410 - 500 nm) dan violet (< 400 nm).[19] Masing-masing jenis cahaya berbeda pengaruhnya terhadap fotosintesis.[19] Hal ini terkait pada sifat pigmen penangkap cahaya yang bekerja dalam fotosintesis.[19] Pigmen yang terdapat pada membran grana menyerap cahaya yang memiliki panjang gelombang tertentu.[19] Pigmen yang berbeda menyerap cahaya pada panjang gelombang yang berbeda.[19] Kloroplas mengandung beberapa pigmen. Sebagai contoh, klorofil a terutama menyerap cahaya biru-violet dan merah.[19] Klorofil b menyerap cahaya biru dan oranye dan memantulkan cahaya kuning-hijau. Klorofil a berperan langsung dalam reaksi terang, sedangkan klorofil b tidak secara langsung berperan dalam reaksi terang.[19] Proses absorpsi energi cahaya menyebabkan lepasnya elektron berenergi tinggi dari klorofil a yang selanjutnya akan disalurkan dan ditangkap oleh akseptor elektron.[12] Proses ini merupakan awal dari rangkaian panjang reaksi fotosintesis.
[sunting] Reaksi terang
Reaksi terang dari fotosintesis pada membran tilakoid

Reaksi terang adalah proses untuk menghasilkan ATP dan reduksi NADPH2.[20] Reaksi ini memerlukan molekul air dan cahaya matahari. Proses diawali dengan penangkapan foton oleh pigmen sebagai antena.[20]

Reaksi terang melibatkan dua fotosistem yang saling bekerja sama, yaitu fotosistem I dan II.[21] Fotosistem I (PS I) berisi pusat reaksi P700, yang berarti bahwa fotosistem ini optimal menyerap cahaya pada panjang gelombang 700 nm, sedangkan fotosistem II (PS II) berisi pusat reaksi P680 dan optimal menyerap cahaya pada panjang gelombang 680 nm.[21]

Mekanisme reaksi terang diawali dengan tahap dimana fotosistem II menyerap cahaya matahari sehingga elektron klorofil pada PS II tereksitasi dan menyebabkan muatan menjadi tidak stabil.[21] Untuk menstabilkan kembali, PS II akan mengambil elektron dari molekul H2O yang ada disekitarnya. Molekul air akan dipecahkan oleh ion mangan (Mn) yang bertindak sebagai enzim.[21] Hal ini akan mengakibatkan pelepasan H+ di lumen tilakoid. Dengan menggunakan elektron dari air, selanjutnya PS II akan mereduksi plastokuinon (PQ) membentuk PQH2.[21] Plastokuinon merupakan molekul kuinon yang terdapat pada membran lipid bilayer tilakoid. Plastokuinon ini akan mengirimkan elektron dari PS II ke suatu pompa H+ yang disebut sitokrom b6-f kompleks.[20] Reaksi keseluruhan yang terjadi di PS II adalah[21]:
2H2O + 4 foton + 2PQ + 4H- → 4H+ + O2 + 2PQH2


Sitokrom b6-f kompleks berfungsi untuk membawa elektron dari PS II ke PS I dengan mengoksidasi PQH2 dan mereduksi protein kecil yang sangat mudah bergerak dan mengandung tembaga, yang dinamakan plastosianin (PC).[21] Kejadian ini juga menyebabkan terjadinya pompa H+ dari stroma ke membran tilakoid.[21] Reaksi yang terjadi pada sitokrom b6-f kompleks adalah[21]:
2PQH2 + 4PC(Cu2+) → 2PQ + 4PC(Cu+) + 4 H+ (lumen)


Elektron dari sitokrom b6-f kompleks akan diterima oleh fotosistem I.[21] Fotosistem ini menyerap energi cahaya terpisah dari PS II, tapi mengandung kompleks inti terpisahkan, yang menerima elektron yang berasal dari H2O melalui kompleks inti PS II lebih dahulu.[21] Sebagai sistem yang bergantung pada cahaya, PS I berfungsi mengoksidasi plastosianin tereduksi dan memindahkan elektron ke protein Fe-S larut yang disebut feredoksin.[21] Reaksi keseluruhan pada PS I adalah[21]:
Cahaya + 4PC(Cu+) + 4Fd(Fe3+) → 4PC(Cu2+) + 4Fd(Fe2+)


Selanjutnya elektron dari feredoksin digunakan dalam tahap akhir pengangkutan elektron untuk mereduksi NADP+ dan membentuk NADPH.[21] Reaksi ini dikatalisis dalam stroma oleh enzim feredoksin-NADP+ reduktase.[21] Reaksinya adalah[21]:
4Fd (Fe2+) + 2NADP+ + 2H+ → 4Fd (Fe3+) + 2NADPH


Ion H+ yang telah dipompa ke dalam membran tilakoid akan masuk ke dalam ATP sintase.[1] ATP sintase akan menggandengkan pembentukan ATP dengan pengangkutan elektron dan H+ melintasi membran tilakoid.[1] Masuknya H+ pada ATP sintase akan membuat ATP sintase bekerja mengubah ADP dan fosfat anorganik (Pi) menjadi ATP.[1] Reaksi keseluruhan yang terjadi pada reaksi terang adalah sebagai berikut[1]:
Sinar + ADP + Pi + NADP+ + 2H2O → ATP + NADPH + 3H+ + O2
[sunting] Reaksi gelap

Reaksi gelap pada tumbuhan dapat terjadi melalui dua jalur, yaitu siklus Calvin-Benson dan siklus Hatch-Slack.[22] Pada siklus Calvin-Benson tumbuhan mengubah senyawa ribulosa 1,5 bisfosfat menjadi senyawa dengan jumlah atom karbon tiga yaitu senyawa 3-phosphogliserat.[22] Oleh karena itulah tumbuhan yang menjalankan reaksi gelap melalui jalur ini dinamakan tumbuhan C-3.[22] Penambatan CO2 sebagai sumber karbon pada tumbuhan ini dibantu oleh enzim rubisco.[22] Tumbuhan yang reaksi gelapnya mengikuti jalur Hatch-Slack disebut tumbuhan C-4 karena senyawa yang terbentuk setelah penambatan CO2 adalah oksaloasetat yang memiliki empat atom karbon. Enzim yang berperan adalah phosphoenolpyruvate carboxilase.[22]
[sunting] Siklus Calvin-Benson
Siklus Calvin-Benson

Mekanisme siklus Calvin-Benson dimulai dengan fiksasi CO2 oleh ribulosa difosfat karboksilase (RuBP) membentuk 3-fosfogliserat.[22] RuBP merupakan enzim alosetrik yang distimulasi oleh tiga jenis perubahan yang dihasilkan dari pencahayaan kloroplas. Pertama, reaksi dari enzim ini distimulasi oleh peningkatan pH.[22] Jika kloroplas diberi cahaya, ion H+ ditranspor dari stroma ke dalam tilakoid menghasilkan peningkatan pH stroma yang menstimulasi enzim karboksilase, terletak di permukaan luar membran tilakoid.[22] Kedua, reaksi ini distimulasi oleh Mg2+, yang memasuki stroma daun sebagai ion H+, jika kloroplas diberi cahaya.[22] Ketiga, reaksi ini distimulasi oleh NADPH, yang dihasilkan oleh fotosistem I selama pemberian cahaya.[22]

Fiksasi CO2 ini merupakan reaksi gelap yang distimulasi oleh pencahayaan kloroplas.[12] Fikasasi CO2 melewati proses karboksilasi, reduksi, dan regenerasi.[23] Karboksilasi melibatkan penambahan CO2 dan H2O ke RuBP membentuk dua molekul 3-fosfogliserat(3-PGA).[23] Kemudian pada fase reduksi, gugus karboksil dalam 3-PGA direduksi menjadi 1 gugus aldehida dalam 3-fosforgliseradehida (3-Pgaldehida).[23] Reduksi ini tidak terjadi secara langsung, tapi gugus karboksil dari 3-PGA pertama-tama diubah menjadi ester jenis anhidrida asam pada asam 1,3-bifosfogliserat (1,3-bisPGA) dengan penambahan gugus fosfat terakhir dari ATP.[23] ATP ini timbul dari fotofosforilasi dan ADP yang dilepas ketika 1,3-bisPGA terbentuk, yang diubah kembali dengan cepat menjadi ATP oleh reaksi fotofosforilasi tambahan.[23] Bahan pereduksi yang sebenarnya adalah NADPH, yang menyumbang 2 elektron.[23] Secara bersamaan, Pi dilepas dan digunakan kembali untuk mengubah ADP menjadi ATP.[23]

Pada fase regenerasi, yang diregenerasi adalah RuBP yang diperlukan untuk bereaksi dengan CO2 tambahan yang berdifusi secara konstan ke dalam dan melalui stomata.[24] Pada akhir reaksi Calvin, ATP ketiga yang diperlukan bagi tiap molekul CO2 yang ditambat, digunakan untuk mengubah ribulosa-5-fosfat menjadi RuBP, kemudian daur dimulai lagi.[24]

Tiga putaran daur akan menambatkan 3 molekul CO2 dan produk akhirnya adalah 1,3-Pgaldehida.[12] Sebagian digunakan kloroplas untuk membentuk pati, sebagian lainnya dibawa keluar.[12] Sistem ini membuat jumlah total fosfat menjadi konstan di kloroplas, tetapi menyebabkan munculnya triosafosfat di sitosol.[12] Triosa fosfat digunakan sitosol untuk membentuk sukrosa.[12][24]
[sunting] Siklus Hatch-Slack
Siklus Hatch-Slack

Berdasarkan cara memproduksi glukosa, tumbuhan dapat dibedakan menjadi tumbuhan C3 dan C4.[25] Tumbuhan C3 merupakan tumbuhan yang berasal dari daerah subtropis.[25] Tumbuhan ini menghasilkan glukosa dengan pengolahan CO2 melalui siklus Calvin, yang melibatkan enzim Rubisco sebagai penambat CO2.[25] Tumbuhan C3 memerlukan 3 ATP untuk menghasilkan molekul glukosa.[25] Namun, ATP ini dapat terpakai sia-sia tanpa dihasilkannya glukosa.[26] Hal ini dapat terjadi jika ada fotorespirasi, di mana enzim Rubisco tidak menambat CO2 tetapi menambat O2.[26] Tumbuhan C4 adalah tumbuhan yang umumnya ditemukan di daerah tropis.[26] Tumbuhan ini melibatkan dua enzim di dalam pengolahan CO2 menjadi glukosa.[26] Enzim phosphophenol pyruvat carboxilase (PEPco) adalah enzim yang akan mengikat CO2 dari udara dan kemudian akan menjadi oksaloasetat.[26] Oksaloasetat akan diubah menjadi malat.[26] Malat akan terkarboksilasi menjadi piruvat dan CO2.[26] Piruvat akan kembali menjadi PEPco, sedangkan CO2 akan masuk ke dalam siklus Calvin yang berlangsung di sel bundle sheath dan melibatkan enzim RuBP.[26] Proses ini dinamakan siklus Hatch Slack, yang terjadi di sel mesofil.[27] Dalam keseluruhan proses ini, digunakan 5 ATP.[27]
[sunting] Faktor penentu laju fotosintesis

Proses fotosintesis dipengaruhi beberapa faktor yaitu faktor yang dapat memengaruhi secara langsung seperti kondisi lingkungan maupun faktor yang tidak memengaruhi secara langsung seperti terganggunya beberapa fungsi organ yang penting bagi proses fotosintesis.[1] Proses fotosintesis sebenarnya peka terhadap beberapa kondisi lingkungan meliputi kehadiran cahaya matahari, suhu lingkungan, konsentrasi karbondioksida (CO2).[1] Faktor lingkungan tersebut dikenal juga sebagai faktor pembatas dan berpengaruh secara langsung bagi laju fotosintesis.[28]

Faktor pembatas tersebut dapat mencegah laju fotosintesis mencapai kondisi optimum meskipun kondisi lain untuk fotosintesis telah ditingkatkan, inilah sebabnya faktor-faktor pembatas tersebut sangat memengaruhi laju fotosintesis yaitu dengan mengendalikan laju optimum fotosintesis.[28] Selain itu, faktor-faktor seperti translokasi karbohidrat, umur daun, serta ketersediaan nutrisi memengaruhi fungsi organ yang penting pada fotosintesis sehingga secara tidak langsung ikut memengaruhi laju fotosintesis.[29]

Berikut adalah beberapa faktor utama yang menentukan laju fotosintesis[29] :

Intensitas cahaya
Laju fotosintesis maksimum ketika banyak cahaya.
Konsentrasi karbon dioksida
Semakin banyak karbon dioksida di udara, makin banyak jumlah bahan yang dapt digunakan tumbuhan untuk melangsungkan fotosintesis.
Suhu
Enzim-enzim yang bekerja dalam proses fotosintesis hanya dapat bekerja pada suhu optimalnya. Umumnya laju fotosintensis meningkat seiring dengan meningkatnya suhu hingga batas toleransi enzim.
Kadar air
Kekurangan air atau kekeringan menyebabkan stomata menutup, menghambat penyerapan karbon dioksida sehingga mengurangi laju fotosintesis.
Kadar fotosintat (hasil fotosintesis)
Jika kadar fotosintat seperti karbohidrat berkurang, laju fotosintesis akan naik. Bila kadar fotosintat bertambah atau bahkan sampai jenuh, laju fotosintesis akan berkurang.
Tahap pertumbuhan
Penelitian menunjukkan bahwa laju fotosintesis jauh lebih tinggi pada tumbuhan yang sedang berkecambah ketimbang tumbuhan dewasa. Hal ini mungkin dikarenakan tumbuhan berkecambah memerlukan lebih banyak energi dan makanan untuk tumbuh.

[sunting]
Read More … Fotosintesis

ShoutMix chat widget

Mau punya buku tamu seperti ini?
Klik di sini (Info Blog)
Powered by Blogger